

Climate change: a summary for policymakers

MYLES ALLEN Environmental Change Institute, School of Geography and the Environment & Department of Physics University of Oxford

Climate change: a summary for policymakers

- How rising atmospheric CO₂ causes global warming
- How global temperatures and sea level respond
- Quantifying human influence on climate and weather
- The fate of CO₂ and other anthropogenic emissions
- Global impact functions and the social cost of carbon
- Mitigation costs and pathways
- Policy options from carbon pricing to geo-engineering
- Capstone activity: design a robust climate policy

Climate change: a summary for policymakers

- How rising atmospheric CO₂ causes global warming
- How global temperatures and sea level respond
- Quantifying human influence on climate and weather
- The fate of CO₂ and other anthropogenic emissions
- Global impact functions and the social cost of carbon
- Mitigation costs and pathways
- Policy options from carbon pricing to geo-engineering
- Capstone activity: design a robust climate policy

The argument we want to avoid...

1824-1860s: Fourier, Foote and Tyndall

 Identified CO₂ as one of the trace gases responsible for the blanketing effect of the atmosphere, absorbing and emitting infra-red radiation, keeping Earth's surface

CIRCUMSTANCES

Affecting the Beat of the Sun's Bays.

BY MRS. EUNICE FOOTE

Tyndall's experiments

If your eyes worked at 14-16 microns, you would barely be able to see down the street

Infra-red attenuation in a dry atmosphere, 1 bar, 375ppm CO 2 clearly 10000 | Max distance you could see 1000 Attenuation scale (m) 100 10 12 13 14 16 18 17 Wavelength (microns)

Wavelength (1 micron = 1/1000th of a millimetre)

CO₂ molecules in the atmosphere: 400 "parts per million by volume" (0.04% of air molecules)

The reason CO₂ matters: how air molecules interact with electromagnetic radiation

Some of these modes create asymmetrically-charged "dipoles" which interact with electromagnetic radiation, particularly in the infra-red part of the spectrum.

Some of the many modes of motion of a CO₂ molecule

The fewer modes of motion of an O₂ or N₂ molecule

Molecular dipoles may be small, but they have farreaching influence

The first quantitative account of the impact of rising CO₂ on temperature: Svante Arrhenius

 "Any doubling of the percentage of carbon dioxide in the air would raise the temperature of the earth's surface by 4° C; and if the carbon dioxide were increased fourfold, the temperature would rise by 8° C."

Arrhenius' non-obvious prediction

Ångström intervenes

 Repeated a variant of Tyndall's experiment, varying the amount of CO₂ in the tube, and showed very little change in IR absorption: the "saturation" argument, still surprisingly popular today.

Even with a broadband infrared camera, you certainly couldn't see through the atmosphere

The schoolbook model of the "greenhouse effect"

Making sense of the schoolbook model

- Surface energy balance
- Planetary energy balance (2) $F_0(1-a) = qF_o + F_a$
- Simultaneous equations (1)+(2)
- Stefan's law: Energy radiated proportional to 4th power of the temperature in Kelvin
- Rearranging
- Plugging in the numbers
- Result (only 1° C out!)

(1)
$$F_0(1-a) = F_g - F_a$$

$$F_0(1-a) = qF_g + F_a$$

$$2F_0(1-a) = (1+q)F_g$$

$$\frac{2F_0(1-\partial)}{(1+\partial)} = F_g = ST_g^4$$

$$T_g = \sqrt[4]{\frac{2F_0(1-a)}{S(1+q)}}$$

$$= 4 \frac{2^{3}40^{3}(1-0.3)}{567^{10^{-8}}(1+0.2)}$$

$$= 289 \text{K} = 16^{\circ} \text{C}$$

But is this really how it works?

 Try doubling CO₂ in a realistic atmospheric radiative transfer model (don't take my word for it):

Go to http://forecast.uchicago.edu/Projects/modtran.html, select "Show Raw Model Output" & look for "average transmittance" at bottom

MODTRAN tropical atmosphere:

```
\theta(400 \text{ppm CO}_2) = 0.1393
\theta(800 \text{ppm CO}_2) = 0.1360
```

- Implying warming ΔT_g due to doubling CO_2 is < 0.3°C
- So was Ångström right?

Gilbert Plass (1955) and the role of water vapour

- Noted "the CO₂ theory" had been criticized because of CO₂ saturation argument and strong absorption of infra-red radiation by water vapor.
- Correctly observed that at the altitudes from which radiation escapes to space, above the humid lower atmosphere,
 CO₂ is the dominant greenhouse gas and absorption is not saturated.

Both temperature (colour) and density of CO₂ molecules decrease with height :

above

View from side

Increasing CO₂ forces energy to escape from higher

Increasing CO₂ forces energy to escape from higher

Higher air is colder, and so radiates less energy

So the surface and lower atmosphere have to

So the surface and lower atmosphere have to

above

So the surface and lower atmosphere have to

Successive CO₂ doublings have about the same

Impact of rising GHGs on the spectrum of outgoing energy has been directly observed from space

Nimbus 4 spacecraft, 1970

Comparison of outgoing spectra, IMG (1997, 367 ppm) versus IRIS (1970, 323 ppm).

Change in outgoing spectrum after correcting for impact of temperature. Reductions of about 1.5° C in wavelengths affected by CO₂.

Harries et al (2001)

How much will the world warm up?

- Averaged over the surface, seasons, weather conditions etc., a sudden doubling of atmospheric CO₂ would reduce outgoing infra-red energy by about 4 W/m²
 - Current imbalance due to past emissions is >3 W/m²
- How much would the world have to warm up to restore balance between incoming and outgoing energy?

$$DT_{2xCO2} = \frac{F_{2xCO2}}{/}$$

• "Sensitivity parameter" λ is the extra energy emitted to space per degree of warming

Lots of things change as the world warms: "Feedbacks" affecting the sensitivity parameter

- Simple thermal "blackbody" effect: +4 W/m²/° C
- Increased water vapour: -2 W/m²/° C
- Reduced lapse rate: $+0.75 \text{ W/m}^2/^{\circ} \text{ C}$
- Changes in clouds: $-0.5 \text{ W/m}^2/^{\circ} \text{ C}$
- Reduced albedo (less snow/ice): <u>−0.25</u> W/m²/° C
- Net sensitivity parameter λ : +2 W/m²/° C

How the uncertainties add up

- $\lambda = \lambda_{BB} + \lambda_{WV} + \lambda_{LR} + \lambda_{C} + \lambda_{A} = 2(\pm 1) \text{ W/m}^2/^{\circ} \text{ C}$
- Equilibrium climate sensitivity depends on forcing (well known) divided by sensitivity parameter (uncertain):

$$DT_{2xCO2} = \frac{F_{2xCO2}}{/}$$

- Round numbers: $F_{2xCO2} = 4 \text{ W/m}^2 \& \lambda = 2 \pm 1 \text{ W/m}^2/^{\circ} \text{ C}$
- Best estimate $\Delta T_{2xCO2} = 2^{\circ} C$
- Uncertainty range = $1.3 4^{\circ}$ C
- Upper limit is more uncertain than lower limit.

The 1979 National Academy of Sciences Report chaired by Jules Charney

- Gave a range of 1.5-4.5° C for ΔT_{2xCO2} , emphasizing:
 - Oceans "could delay the estimated warming for several decades" (warming reached 1° C around 2017)
 - "We may not be given a warning until the CO₂ loading is such that an appreciable climate change is inevitable."
 - These are the topics of the next lecture.

What we have learned about the enhanced CO₂ greenhouse effect

- Air temperature decreases with height through the lower atmosphere.
- Density of absorbing CO₂ molecules falls of exponentially.
- Increasing CO₂ raises altitude at which absorber is thin enough for radiation to escape to space.
- Each CO₂ doubling has same impact as the last: for twice as many tonnes of additional atmospheric CO₂.
- Feedbacks make the equilibrium response uncertain, particularly the upper bound.

What we have learned about climate models

- Any statement about unobservable quantities, including future climate, requires modeling.
- "All models are wrong, some are useful" (Box)
- Even very simple models can be misleading if they get the right answers for the wrong reason.
- "Bottom up" approaches to climate modeling don't usefully constrain future climate: need observations.
- Determining a "safe" CO₂ concentration is hard, perhaps impossible.

