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Climate change: a summary for policymakers

* How rising atmospheric CO, causes global warming
 How global temperatures and sea level respond

* Quantifying human influence on climate and weather
* The fate of CO, and other anthropogenic emissions

* Global impact functions and the social cost of carbon
* Mitigation costs and pathways

* Policy options from carbon pricing to geo-engineering

e Capstone activity: design a robust climate policy
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Summary of lecture 1: how rising CO, causes global
warming

* Air temperature decreases with height at a constant
absolute rate (c. 6.5° C/km) through the troposphere.

* The effective density of CO, absorber decreases with
height at a constant fractional rate (c. 30%/km).

* Doubling CO, concentrations “thickens the fluffy blanket
of greenhouse gases” by about 2km.

* In wavelengths partially absorbed by CO,, this raises, and
hence cools, the altitude from which IR escapes to space.

* Less energy out, same energy in: imbalance.
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Summary of lecture 1: how rising CO, causes global
warming

e Externally-driven imbalance between incoming and
outgoing energy is known as “radiative forcing” :

szco2 & C(2) 0

F(t)= Iogg T
|Og(2) C’pre-industrial ]
— Foocoo = 3.7 Watts per square metre

= 1.9 billion Gigawatts over the whole Earth
= 1000x world primary energy consumption

* This energy has to go somewhere, so the surface and
lower atmosphere have to warm up to restore balance.

* How much warming depends on other changes.
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Drivers of change in the global energy budget:
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To understand the response, we will need a climate
model
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Our modelling philosophy

N

™. Everything should be made as simple
‘as possible, but not simpler.
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Evidence that you don’t need a very complicated
model to make a successful climate prediction
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Understanding what models are, and why you
don’t need to trust them
* Alarge burette:

A@:F—kh
dt

* histhe water depth.

* Aisthe water cross-sectional area.

* Fisthe rate of water flowing in from the pump.

* kisthe “openness” of the tap.

* Open L2 demos.xlsx & look at top sheet “Burette”
e Rearranging the equation (check cell C11):

an=L"K" 4
y
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Understanding what models are, and why you
don’t need to trust them

 Parameters in models correspond to quantities that are
more or less easy to measure:
— Cross-sectional area (easy to measure)
— Flow (could be measured, but isn’t)
— “Openness of tap” (fuzzier concept, hard to measure, only

really makes sense in the context of this simple model)

* But we can observe the behaviour of the system, and

infer what values these parameters can take.

— Group exercise: find values of F and k that reproduce the green
diamonds (slightly noisy “observations” of water level)
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A very simple model of the climate system

e The Earth’s Climate:

c-f,
dt

T is the global average surface temperature change.

-IT

C is the “effective heat capacity”.
* F_.isimbalance between incoming and outgoing energy.

e

* Ais aconstant “sensitivity parameter”,
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You’ve seen this model already

* Alarge burette:

A@:F—kh
dt

* histhe water depth.
e Aisthe water cross-sectional area.

* Fisthe rate of water flowing in from the pump.

k is the “openness” of the tap.
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Some exercises with our very simple model

e The Earth’s Climate:

c-f,
dt

 Tisthe global average surface temperature change.

-IT

* (Cisthe “effective heat capacity”.

* F_.isimbalance between incoming and outgoing energy.

* Ais aconstant “sensitivity parameter”,

* Open L2 demos.xlsx & look at second sheet “ClimateStep”
* Equations are the same, but units very different

 Tryvarying A and C: what aspect of the response to this forcing
profile does each one control?
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What can we say about the real climate?
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| Observed changes in

| monthly global mean
surface temperature from
four datasets




Challenges in estimating 100-year global
temperature change — observational coverage

HadCRUT4 Ann. mean 1990:2010 - 1901:1920 glb. mean: 0.8C
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Changing observing systems

Standard Bucket (1891)
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Let’s see how we get on with our very simple

model

e The Earth’s Climate:

c-f,
dt

 Tisthe global average surface temperature change.

-IT

* (Cisthe “effective heat capacity”.

* F_.isimbalance between incoming and outgoing energy.
* Ais aconstant “sensitivity parameter”,

* Open L2 demos.xlsx & look at third sheet “ClimateBasic”
* Equations as before, now with observed radiative forcing

* Group exercise: find combinations of A and C that reproduce
the observed warming
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What determines the effective heat capacity?

* Most energy shows up in the oceans — but if the oceans
warmed uniformly:
C = Heat capacity per unit Earth surface area

= Density ~ Specific heat capacity = Depth ~ Ocean area fraction
=1000kgm™ " 4000Jkg™ °C™~ 4000m ~ 0.7
=355 W-yr/ m*/°C™
Units:
1 W-yr / m* =16.1 ZettaJoules (10** Joules)

OXFORD



Most heat accumulates in the upper ocean. Why?
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Where the oceans are warming up
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Density of sea-water controlled by salinity at low
temperatures

p-1000 at p=0db
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Water is cold enough to “escape to depth” only at
high-latitudes, carrying warming with it
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Updating heat content estimates

Cheng et al,
Science, 2019
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Including the deep ocean in our simple model

* Simple mixed-layer energy balance model with a deep ocean:

dT

C, = o= IT,~ (T, - T,)
dT
C,S=g(7,-T))

* (. is effective heat capacity of surface and mixed layer.

* C,is effective heat capacity of deep ocean (C,>> C,).

* T,is average surface temperature change

e T,is average deep ocean temperature change

* Flux of heat into deep ocean given by a constant mixing rate y.

OXFORD



Back to burette analogy

* Two coupled burettes, X-sectional areas a, & a,, a, >> a,

b k(B -
a4 7 F-kh -k, (h - hy)

az% =k, (hy = hy)
* Fisincoming flow
* h, & h, are depth of water in each burette
* k, & k, represent transmissivity (“openness”) of taps
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This explains a rapid initial adjustment, and then
centennial-timescale adjustment to equilibrium
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But the pattern of warming changes as climate

equilibrates, reducing energy lost to space per °

AT (r)/AT

control to years 1-10 years 1-10 to years 20-60

-2

-4

Armour et al, 2013
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Allowing for changing feedbacks as the climate
system adjusts to equilibrium

al, _ - IT g(T -T,
S odt
C ddT g(T -T )

* [T -T,) represents additional radiation to space due to
disequilibrium.

* Open L2 demos.xlsx & look at third sheet “ClimatePro”

* Take-home exercise: explore what combinations of parameters
are consistent with observed warming and rate of heat uptake
#1(0.3-0.5 W/m?2 over 1971-2010)
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Multiple drivers of sea level change

Sperry Glacier
_‘ Glacier National Park, MT -~ ® O C e a n t h e r m a |

expansion.

e Groundwater
extraction.

 Worldwide retreat of
mountain glaciers.

* Mass loss of Greenland
and Antarctic peripheral
icecaps.
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Halting surface warming slows sea-level rise but
doesn’t stop it
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Conclusions from simple global climate models

|II

* No such thing as a “observational” estimate of an
unobservable quantity: all estimates involve a
combination of observations and modelling.

* At |least two response-timescales are needed to
reproduce changes in global mean surface temperature
in more complex models.

 Changing feedbacks with state means higher equilibrium
warming than predicted by recent energy budget.
e Stable temperatures = constant rate of sea level rise

— (on century timescale)
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Climate change: a summary for policymakers

* How rising atmospheric CO, causes global warming
 How global temperatures and sea level respond

* Quantifying human influence on climate and weather
* The fate of CO, and other anthropogenic emissions

* Global impact functions and the social cost of carbon
* Mitigation costs and pathways

* Policy options from carbon pricing to geo-engineering

e Capstone activity: design a robust climate policy
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