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Climate change: a summary for policymakers

* How rising atmospheric CO, causes global warming
 How global temperatures and sea level respond

* Quantifying human influence on climate and weather
* The fate of CO, and other anthropogenic emissions

* Global impact functions and the social cost of carbon
* Mitigation costs and pathways

* Policy options from carbon pricing to geo-engineering

e Capstone activity: design a robust climate policy
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Conclusions from simple global climate models —

* Averysimple (“two coupled bathtubs”) model does a
good job of capturing the short (few years) and long (few
centuries) global surface temperature response to a
global energy imbalance (radiative forcing).

* But observations (e.g. of the recent energy budget) only
constrain key parameters like ECS and TCR to within a
factor of three.

* So how do we work out how much of the observed
warming is attributable to human influence?
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Why we still need to explain the evidence for |scroo.
human influence on climate

* “I would not agree that it [CO, emissions from human
activity] is a primary contributor to the global warming
that we see.”

— Scott Pruitt, EPA Administrator, on CNBC, responding to the
question “Do you believe it has been proven that CO, is the
primary control knob for climate?”
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Even Pruitt sees warming: —
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Observed global average temperatures from HadCRUT4
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Both human activities and natural factors have
been disturbing the global energy balance.

Drivers of change in the global energy balance:
Human activity
Long- and short-term solar variability

- Volcanic activity
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We know the climate system conserves SCHOOL

energy...
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..but we don’t know how large the responses |scioo.
to human and natural drivers are.
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..but we don’t know how large the responses |scioo.
to human and natural drivers are.
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So we estimate them from the data, assuming |scroo
first that CO,-induced warming to date is zero
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So we estimate them from the data, assuming |sciool
first that CO,-induced warming to date is zero

Global Mean MSU-4 Time Series
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Residuals are improbably well correlated with |scroo.
the expected response to human activity
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So we increase the amount of warming due to
CO, emissions to date
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Best-fit explanation of observed warming
1 Pruitt = 0. 1°C CO,-induced warmlng to date
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So we increase the amount of warming due to |scroo
CO, emissions to date
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So we increase the amount of warming due to |scroo
CO, emissions to date

Best-fit explanation of observed warming

1 Pruitt = 0. 1°C CO,-induced warmlng to date 5
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So we increase the amount of warming due to
CO, emissions to date
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So we increase the amount of warming due to
CO, emissions to date

Warming relative to 1861-1880 (°C)
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So we increase the amount of warming due to
CO, emissions to date

Warming relative to 1861-1880 (°C)
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So we increase the amount of warming due to
CO, emissions to date
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Best-fit explanation of observed warming
1 Pruitt = 0. 1°C CO,-induced warmlng to date
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So we increase the amount of warming due to |scroo
CO, emissions to date

Warming relative to 1861-1880 (°C)
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So we increase the amount of warming due to |scroo
CO, emissions to date
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1 Pruitt = 0. 1°C CO,-induced warmlng to date

~ 15 T I 115
é) | [ Unexplained residual versus expected % |
~ 1.0L human-induced warming @ ] N
Q - = =
& 10%0.5 8 ;102
R I g AN 02
— < I.J, <,
2 s - ‘ Al 1 2
- -0.5¢C 2 —
: ~ 1900 1920 1940 1960 198 2000 2020 ‘L L;w mu ﬂ - g
= 05 M mmm -5 g
) - (l { I .
= - M ) lnl i \7 | B
I l I A H \h M‘ 0y i
o TR b l 1 3
(@)] c
£ Dy
£ o)
© @)
=

. . . . | . . | | ! '5
1900 1920 1940 1960 1980 2000 2020




OXFORD
MARTIN

So we increase the amount of warming due to |scioo.
CO, emissions to date

r‘, i ’ ~~~~~~~~~~~~~~ ‘ ffffffffffff ’ ‘M ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -0

Best-fit explanation of observed warming
1 Pruitt = 0. 1°C CO,-induced warmlng to date

~ 15 I 15
é) : N Unexplained residual versus expected % : —~~
5/ - 10 - human-induced warming g J | 4_,(2
D - S 8 4’5
o 10§ g i !]{} 10
§ B Z.O e g ‘ ‘ ﬂﬂrlm B CES)
- N 5 L ]

‘g - 1900 1920 1940 1960 198 2000 2020I lﬂ' 1[1 * M B g
'5 0.5— “h ¢ﬂ\u4m BE g
g l ol 1 =
'5 ”ﬂ hw l “ “ w ()]
: A T "
o M\’l“ IPR=
> =
£ T
c O
@ O
=

. . . . | . . | | ! ! '5
1900 1920 1940 1960 1980 2000 2020

OXFORD



OXFORD
MARTIN

So we increase the amount of warming due to |scroo
CO, emissions to date
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Best-fit explanation of observed warming
1 Pruitt = 0. 1°C CO,-induced warmlng to date
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So we increase the amount of warming due to |scroo
CO, emissions to date

Warming relative to 1861-1880 (°C)
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So we increase the amount of warming due to
CO, emissions to date
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Best-fit explanation of observed warming
1 Pruitt = 0. 1°C CO,-induced warmlng to date
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So we increase the amount of warming due to |scroo
CO, emissions to date

Warming relative to 1861-1880 (°C)
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And obtain the best fit, with no unexplained OXFORD
residual suspiciously resembling human- SCHOOL
induced warming, at 0.8°C CO,-induced

warmlng to date
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Responding to speculation with facts —

 The best explanation of the observed global mean surface
temperature record, in a simple least-squares sense, is that
CO, emissions from human activity have contributed about
80% of the observed warming since 1870.

e Attempting to explain the observed temperature record
with natural factors alone, even allowing any amount of
amplification of the response to low- and high-frequency
solar variability and volcanic activity, leaves an unexplained
residual that is suspiciously well correlated with the
expected response to human activity.
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“It is extremely likely that human influence has been the
dominant cause of the observed warming since the mid-
20t century” — IPCC (2013)

| | | | |
Contributions to
Observed global warming
Greenhouse gases | |since 1950
Net anthropogenic Fig. 10.5
: | Aerosols & other anthropogenic
—— Natural: solar & volcanic activity
—— Internal variability
I I B | I R T N B I N R
-0.5 0.0 . 05 1.0
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IPCC AR5 Working Group | IDCC @‘f} v::ﬁyv
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Climate Change 2013: The Physical Science Basis INTERGOVERNMENTAL PANEL ON ClimaTe change



Evolution of the IPCC’s “attribution” statement

* “The balance of evidence suggests that there is a discernible human
influence on global climate.” (1995)

» “Most of the observed warming over the last 50 years is likely to have been
due to the increase in greenhouse gas concentrations.” (2001)

» “Most of the observed increase in global average temperatures since the
mid-20th century is very likely due to the observed increase in
anthropogenic greenhouse gas concentrations.” (2007)

* “It is extremely likely that more than half of the observed increase in global
average surface temperature from 1951 to 2010 was caused by the
anthropogenic increase in greenhouse gas concentrations and other
anthropogenic forcings together.” (2013)

* “The best estimate of the human-induced contribution to warming is similar to the
observed warming over this period.” (2013b)

« “Human activities are estimated to have caused approximately 1.0° C of
global warming above pre-industrial levels, with a likely range of 0.8° C to
1.2° C.” (2018)

* Likely=P>0.66; Very likely=P>0.9; Extremely likely=P>0.95

°
IPCC AR5 Working Group | IDCC *"f 89

Climate Change 2013: The Physical Science Basis INTERGOVERNMENTAL PANEL ON Clim3Te change  wwmo uUNEP




OXFORD
MARTIN
SCHOOL

For more information, data and an up-to-
the-minute estimate of human-induced
warming, see globalwarmingindex.org
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Most climate-related harm is associated SCHOOL
with extreme weather, not global averages

Thanks to Fredi Otto for event attribution slides
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Few harmful events would never have sCHooL
occurred “but for” climate change
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But we can ask how has climate change scHooL
affected the risk of such a harmful event?
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Fraction attributable risk SCHOOL
(probably should have been called Fraction Attributable Hazard)

Threshold P,: Probability of exceeding
: a threshold in “world that
might have been” (no
anthropogenic forcings).

Actual
world

P,: Probability of exceeding
a threshold in “world that

.«

IS .

Counterfactual
world

Likelihood

{ PO

> FAR =1— (P,/P,)

Climate variable

FAR ~1 threshold exceeded only in the actual world with human influence
FAR < O threshold more likely to be exceeded in the natural world
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How we attribute changes in risk: the scrooL
example of the UK floods of 2014
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Need to be very clear what you're scrooL
interested in

Simulated UK rainfall January 2014 Simulated Thames river flow January 2014
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And you need a lot of computing power ~134,000 simulations!

Schaller et al., 2015
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Temperature [*C]
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Need to be very clear what you’re SCHOOL
interested in

Heatwave in Serbia: much smaller increase in risk of high heat stress index than risk of
high temperature
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Not all events are being made more likely: a |sciool
flood that didn’t happen in Spring 2001

b) Spring flow, River Don, UK
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This may be starting to matter... —

51.  Further requests the Executive Committee of the Warsaw International Mechanism
to 1nitiate its work, at its next meeting, to operationalize the provisions referred to in
paragraphs 49 and 50 above, and to report on progress thereon 1n its annual report;

52.  Agrees that Article 8 of the Agreement does nof involve or provide a basis for any
liability or compensation:

53.  Decides that, in the implementation of the Agreement, financial resources provided
to developing countries should enhance the implementation of their policies, strategies,
regulations and action plans and their climate change actions with respect to both
mitigation and adaptation to contribute to the achievement of the purpose of the Agreement
as defined 1n Article 2;
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The numbers are potentially large

NatCatSERVICE

Weather related loss events worldwide 1980 — 2014 PARTRRCIRES
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The numbers are potentially large —

NatCatSERVICE

Weather-related loss events worldwide 1980 - 2014 RSO
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Systematic assessment of climate change scrooL
damages is possible: New Zealand example

Year Date Event FAR Cost (SM) Attributable
Cost (SM)
2007 10 -12-Jul North North 0.30 68.65 20.595
Island
2017 3-7 April North Island 0.35 66.4 23.24
2013 19-22 April Nelson, BoP 0.30 46.2 13.86
2017 7-12 March Upper North 0.40 41.7 16.68
Island
2015 18-21 June Lower North 0.10 41.5 4.15
Island
2016 23-24 March  West Coast- 0.40 30.2 12.08
Nelson
2015 2-4 June Otago 0.05 21.5 1.075
2015 13-15 May Lower North 0.30 21.9 6.57
Island

https://treasury.govt.nz/sites/default/files/2018-08/LSF-estimating-financial-cost-of-
climate-change-in-nz.pdf
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