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Climate change: a summary for policymakers

* How rising atmospheric CO, causes global warming
 How global temperatures and sea level respond

* Quantifying human influence on climate and weather
* The fate of CO, and other anthropogenic emissions

* Global impact functions and the social cost of carbon
e Mitigation costs and pathways

* Policy options from carbon pricing to geo-engineering

e Capstone activity: design a robust climate policy
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Climate change: a summary for policymakers

* How rising atmospheric CO, causes global warming
 How global temperatures and sea level respond

* Quantifying human influence on climate and weather
* Should we all go vegan to address climate change?

* Global impact functions and the social cost of carbon
* Mitigation costs and pathways

* Policy options from carbon pricing to geo-engineering

e Capstone activity: design a robust climate policy
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What do these two have in common?

Alexandria Ocasio-Cortez Darren Woods, CEO of Exxon-
Brooklyn US Congresswoman Mobil

* They’'ve both expressed some unhelpfully short-term

views about climate change
o
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The global carbon cycle:
Reservoirs and flows
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A seductive argument

* Land and oceans are currently taking up carbon at a rate
of about 20 GtCO, (billion tonnes of CO,) per year.

* Anthropogenic emissions from fossil fuels and industry +
land use change = 41 GtCO..

* Oceans contain 10x as much dissolved inorganic carbon
as total available fossil fuels: an inexhaustible sink?

* So if we reduce emissions by 50%, atmospheric
concentrations will stop rising, yes?

e Sadly, no.
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This matters: “contraction and convergence”
model of climate change mitigation policy

3 Solution — contraction and convergence

First advocated in 1990 by Aubrey Meyer
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“Long-term convergence of per capita emissions is ... the only

equitable basis for a global compact on climate change”

Manmohan Singh, 30 June 2008
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Why CO, concentrations don’t revert to pre-

industrial after emissions cease: the Revelle Factor
* Inorganic carbon in the oceans takes three forms: ﬁ\
— Dissolved CO, =0.5% e -
— Bicarbonate ions HCO; = 89%
— Carbonate ions CO;>  =10.5%

* On multi-century timescales, these are in equilibrium.

* So if we dissolve 1000 additional molecules of CO,, 995 of
them are converted to two forms of carbonate ion:
CO, + H,0 <> HCO, + H*
HCO, < CO,> + H*
* Ocean “buffer” keeps pH roughly constant, but every extra
molecule of CO, “uses up” a carbonate CO,% ion.

* Since only 10% of the carbon in the ocean is carbonate,
the ocean “reservoir” is 10x smaller than it appears.
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So we can expect the impact of CO, emissions to
persist for a remarkably long time
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Charles David Keeling’s first observations, 1958-60

* Unequivocal evidence
that CO, concentrations
are rising steadily
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Carbon dioxide levels are rising to levels not seen
in over 20 million years

400
380
360 1|
340 AT 4 <€ >

CO, (ppm)

320+ 1 F
300 1 F ..,-w""
[ 0e RO 0% g 00, 4 0, o%any 1 [ o 9

0 500 1000 1500 1750 1800 1900 2000 2020

Year Year

0),430)23D)



Atmospheric oxygen and carbon isotopes indicate
recent CO, increase is created by combustion, not
simply released from the oceans or by volcanism
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Where is this carbon dioxide coming from?

Data: CDIACI/GCP
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Cumulative CO, emissions added up over time

Data: CDIAC/NOAA-ESRL/GCP/Heede
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And where is it going? Atmospheric accumulation
is more than half cumulative fossil fuel emissions
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How CO, emissions affect concentrations and
temperatures

Response to idealised emission scenarios
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The climate response to a broad range of emissions scenarios, demonstrating the

iImportance of the cumulative carbon budget.
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Now it’s your turn

* Open OxfordSimplelAM 2019 vO.xlsx

* Emissions->concentrations->forcing->temperature in a
simple climate model (the one we saw last week, with a
similar set of equations for emissions->concentrations)

e Shows RCP8.5 (“no-climate-policy”) scenario
 Choose RCP3PD in the menu under EMS_SCEN

* Check emissions to forcing by ticking RCP DATA

* Check forcing to temperature by ticking CMIP5 scenario

* Note you’ll need to increase ECS to match CMIP5
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Cumulative emissions of carbon dioxide are the
principal determinant of dangerous climate change

= ldealised CO, emission profiles Temperature response
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Why this matters
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A remarkable achievement: the Paris Agreement

@ United Nations FCCCcprorsiomreva

{ C ‘v Framework Convention on Distr.: Limited
&&Céy Climate Change 12 December 2015
—
Original: English
-
Article 2

This Agreement, in enhancing the implementation of the Convention, including its objective, aims to strengthen

the global response to the threat of climate change, in the context of sustainable development and efforts to
eradicate poverty, including by:

(@) Holding the increase in the global average temperature to well below 2 °C above pre-industrial levels and
to pursue efforts to limit the temperature increase to 1.5 °C above pre-industrial levels, recognizing that
this would significantly reduce the risks and impacts of climate change;

Article 4

In order to achieve the long-term temperature goal set out in Article 2, Parties aim to reach global peaking of
greenhouse gas emissions as soon as possible, recognizing that peaking will take longer for developing country
Parties, and to undertake rapid reductions thereafter in accordance with best available science, so as to achieve a
balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second
half of this century, on the basis of equity, and in the context of sustainable development and efforts to eradicate
poverty.
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What they thought was needed to stop global
warming, and what is actually needed

3 Solution — contraction and convergence

First advocated in 1990 by Aubrey Meyer
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So 50% by 2050 is not enough
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International Energy Agency “2DS” scenario




Short-termism matters: an excerpt from
ExxonMobil “Energy and Carbon Summary”, 2018

Global energy-related CO2 emissions ()

(billion tonnes)
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Short-termism matters: an excerpt from Alexandria
Ocasio-Cortez’s twitter feed

Alexandria Ocasio-Cortez &
Follow v
@AOC

For some reason GOP seems to think this is
a gaffe, but it’s actually a generational
difference.

Young people understand that climate
change is an existential threat: 3,000
Americans died in Hurricane Maria.

The UN says we’ve got 12 years left to fix it:
amp.theguardian.com/environment/20...

Tom Elliott @tomselliott
.@AOC on millennials and social media: "We're, like, the world is
going to end in 12 years if we don’t address climate change"

Show this thread

6:43 AM - 22 Jan 2019

7,323 Retweets 33,166 Likes (@ Q Q @ Q @ %8 @
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What this means for mitigation policy

* We need to limit cumulative emissions of CO.,.

e Total emissions of one trillion tonnes carbon (1 TtC)
implies a likely range of warming of 0.8-2.5°C
(“Transient Climate Response to Emissions”, TCRE).

e Postponing emissions peak to 20xx does not “commit
us to 2°C”, it commits us to potentially unfeasible
rates of emission reductions after 20xx if we are still
to keep temperatures well below 2°C.

e “Sustainable” emissions after temperatures peak are
indistinguishable from zero.

What about 1.5° C?

OXFORD



Warming response to stylized emissions pathway reaching net zero
CO, emissions in 2055

Global warming relative to 1850-1900 (°C)
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Faster immediate CO, reductions reaching net zero in 2040 reduce
total cumulative CO, emissions

b) Stylized net global CO2 emission pathways ¢) Cumulative net CO2 emissions d) Non-CO:z radiative forcing pathways
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Faster immediate CO, reductions reaching net zero in 2040 result
In a higher probability of limiting warming to 1.5°C

Global warming relative to 1850-1900 (°C)
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Future temperatures are also affected by radiative forcing due to
methane, aerosols, nitrous oxide and other forcing agents

b) Stylized global CO2 emission pathways
Billion tonnes CO2 per year (Gt/y)
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No reduction of non-CO, radiative forcing after 2030 results in a
lower probability of limiting warming to 1.5°C

Global warming relative to 1850-1900 (°C)
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Impact of non-CO, anthropogenic warming

At present, non-CO, greenhouse warming and sulphate
cooling approximately cancel, but no longer do so in the
future under most scenarios.

Avoiding 2°C/1.5° C CO,-induced warming is necessary;,
but not sufficient, condition for avoiding 2°C/1.5° C total
warming.

So how do we set about reducing emissions of other
(mostly shorter-lived) climate forcing agents?

And how do we prioritize these against CO,?
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Is this true? Or helpful?




“All current greenhouse gas emissions [...] affect the rate and

magnitude of climate change over the next few decades” AR5-SyR
Impact of 2011 emissions of different agents on future temperatures:
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Your turn again

* On the spreadsheet OxfordSimplelAM_2019_0.xlsx
— Untick HadCRUT4 observations, RCP and CMIP5 data
— Select Pulse_CO2 in the EMS_SCEN drop-down
— Now try Pulse_CH4 and Pulse_N20 — how do they differ?

* Homework exercises:
— Explore Step_CO2, Step_CH4 and Step_N20

— Try varying ECS and TCR (default setting of TCR preserves the
ratio with ECS, but you can over-write it). Which aspects of the
response to these various emissions scenarios do they affect?
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Comparing emissions without a climate model:
climate metrics

* Global Warming Potential (GWP): integrated radiative forcing
perturbation over a specified time-horizon caused by a 1-tonne
emission of gas, relative to a tonne of CO,.

* Global Temperature Potential (GTP): temperature perturbation at
the end of a specified timescale resulting from a 1-tonne emission
of gas, relative to a tonne of CO.,.

e Revised Global Warming Potential (GWP*): for short-lived
pollutants only, radiative forcing perturbation caused by a 1-tonne
per year increase in rate of emission of gas, relative to integrated
radiative forcing caused by a one-off 1-tonne emission of CO.,.
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“Equivalent” emissions of CO, and methane have  |marm

SCHOOL

very different impacts on temperature —

Annual CH4 emissions

1 tCHafy

s Rise by 25%

30 years

Fall by 10%

Fall by 25%

a From Climate metrics for ruminant livestock, Oxford Martin Programme on Climate
eCI Pollutants briefing: https://www.oxfordmartin.ox.ac.uk/publications/view/2714



https://www.oxfordmartin.ox.ac.uk/publications/view/2714

“Equivalent” emissions of CO, and methane have
very different impacts on temperature

Annual CH4 emissions

1 tCHafy

Rise by 25%

30 years

Fall by 10%

Fall by 25%

o

Total equivalent CO2 emissions
Using GWP100

980 tCO2
=33 tCO2/y for 30y

800 tCO2 ‘“8\
\")
735 tCO2 ‘\\“$\$

From Climate metrics for ruminant livestock, Oxford Martin Programme on Climate
Pollutants briefing: https://www.oxfordmartin.ox.ac.uk/publications/view/2714
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https://www.oxfordmartin.ox.ac.uk/publications/view/2714
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Equivalence of CH, and CO, - revisited SEHOL

Annual CH4 emissions Total equivalent CO2 emissions
1 tCHa/y Using GWP100 Using GWP*

980 tCO2 945 tCO2 ‘\‘s\

Rise by 25% =33 tCO2/y for 30y =32 tCO2/y for 30y

30 years

800 tCO> s‘\\

Fall by 10% 0 tCOs

735 tCO2 %

Fall by 25%

-420 tCO2

a From Climate metrics for ruminant livestock, Oxford Martin Programme on Climate
eC]_ Pollutants briefing: https://www.oxfordmartin.ox.ac.uk/publications/view/2714 OXFORD
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and cumulative emissions since 1990 —

50 Annual New Zealand emissions under GWP ’0 Cumulative emissions since 1990 under GWP
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New Zealand emissions under GWP*: annual rates [marmin

. . . . SCHOOL
and cumulative emissions since 1990 —
50 Annual New Zealand emissions under GWP* ’0 Cumulative emissions since 1990 under GWP*
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New Zealand’s contributions to global warming MARTIN

SCHOOL
since 1990 from different greenhouse gases —
0.020 New Zealand contribution to global warming rate 0.8 New Zealand contribution to global warming since 1990
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Methane emissions under GWP* more accurately reflect
contributions to global temperature increase
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Equivalent drivers of climate change: both caused  |warmn

SCHOOL

warming in the past, but are no longer doing so —

A closed power station

A gently declining (10% over
30 years) herd of cattle
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Why short-termism matters SCHOOL

* |t lets Exxon-Mobil say they fully support the Paris
Agreement out to 2035 or so...

* |t lets environmentalists claim we can solve climate
change by adopting a plant-based diet
— Methane reductions could compensate for CO,-induced
warming for a decade or maybe two, but then what?
e Conventional accounting rules used by UNFCCC:

— Undervalue the short-term impact of methane reductions,
and overvalue their long-term impact.

— Would equate net-zero global emissions with a global
cooling trend (consistent with Paris Agreement?).

"] — Are demonstrably unfair on livestock farmers.
eCI OXFORD




Beware the Faustian bargain
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