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Climate change: a summary for policymakers

* How rising atmospheric CO, causes global warming
 How global temperatures and sea level respond

* Quantifying human influence on climate and weather
* The fate of CO, and other anthropogenic emissions

* Global impact functions and the social cost of carbon
e Mitigation costs and pathways

* Policy options from carbon pricing to geo-engineering

e Capstone activity: design a robust climate policy
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Climate change: a summary for policymakers

* How rising atmospheric CO, causes global warming
 How global temperatures and sea level respond

* Quantifying human influence on climate and weather
* The fate of CO, and other anthropogenic emissions

* Global impact functions and the social cost of carbon
* Twelve years to save the planet?

* Policy options from carbon pricing to geo-engineering

e Capstone activity: design a robust climate policy
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Cumulative emissions of CO, and future non-CO, radiative forcing
determine the probability of limiting warming to 1.5°C

b) Stylized net global CO: emission pathways ~¢) Cumulative net CO2 emissions
Billion tonnes CO2 per year (GtCO2z/yr)
60

50 -
40 -
30 -
20 -

10 1

0

CO2 emissions

decline from 2020
to reach net zero in

2055 or 2040

T
1980

T
2020

2060

2100

d) Non-CO: radiative forcing pathways

Billion tonnes CO2 (GtCO2) Watts per square metre (W/m?2)

3000 - 3 -
v

v

2000 : 2 A

Cumulative CO2

emissions in pathways
1000 - reaching net zero in 1
2055 and 2040

1980 2020 2060 2100 1980 $2020 2060 2100

Faster CO, reductions reduce cumulative
CO, emissions and increase the probability
of limiting warming to 1.5° C

IDCC

INTERGOVERNMENTAL PANEL oN Climate chanee




Cumulative emissions of CO, and future non-CO, radiative forcing
determine the probability of limiting warming to 1.5°C
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Cumulative emissions of CO, and future non-CO, radiative forcing
determine the probability of limiting warming to 1.5°C

b) Stylized global CO2 emission pathways
Billion tonnes CO2 per year (Gt/y)
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Cumulative emissions of CO, and future non-CO, radiative forcing
determine the probability of limiting warming to 1.5°C
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crosaL|carson Global Fossil CO, Emissions

PROJECT

Global fossil CO, emissions have risen steadily over the last decades.
The peak in global emissions is not yet in sight.

Global Fossil CO, Emissions

Projection 2018
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Estimates for 2015, 2016 and 2017 are preliminary ; 2018 is a projection based on partial data.
Source: CDIAC; Le Quéré et al 2018; Global Carbon Budget 2018



http://cdiac.ornl.gov/trends/emis/meth_reg.html
https://doi.org/10.5194/essd-10-2141-2018
http://www.globalcarbonproject.org/carbonbudget/

g
crosaL carson Emissions Projections for 2018

PROJECT

Global fossil CO, emissions are projected to rise by 2.7% in 2018 [range: +1.8% to +3.7%]
The global growth is driven by the underlying changes at the country level.

Fossil CO, Emissions and 2018 Projections , ,
Projected Gt CO. in 2018
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Source: CDIAC; Jackson et al 2018; Le Quéré et al 2018; Global Carbon Budget 2018



http://cdiac.ornl.gov/trends/emis/meth_reg.html
https://doi.org/10.1088/1748-9326/aaf303
https://doi.org/10.5194/essd-10-2141-2018
http://www.globalcarbonproject.org/carbonbudget/

cLosaL|carson Top emitters: Fossil CO, Emissions per capita

PROJECT

Countries have a broad range of per capita emissions reflecting their national circumstances

Annual Emissions: Top Four Emitters per capita
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. USA 16.2
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@@® Global Carbon Project ¢ Data: CDIAC/UNFCCC/BP/USGS

Source: CDIAC; Le Quéré et al 2018; Global Carbon Budget 2018
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Framing the mitigation problem

* The Kaya Identlty
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Framing the mitigation problem

* The Kaya ldentity: what is actually happening
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crosaL{carson Kaya decomposition

PROJECT

The Kaya decomposition illustrates that relative decoupling of economic growth from CO,
emissions is driven by improved energy intensity (Energy/Gross World Product)

Kaya decomposition of global emissions growth
Changes relative to 2000
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@® Global Carbon Project e Data: CDIAC/GCP/IEA/BP/IMF
GWP: Gross World Product (economic activity)
Energy is Primary Energy from BP statistics using the substitution accounting method
Source: Jackson et al 2018; Global Carbon Budget 2018



https://doi.org/10.1088/1748-9326/aaf303
http://www.globalcarbonproject.org/carbonbudget/

Framing the mitigation problem

* The Kaya ldentity:
Emissions.  Energy . Consumption
Energy  Consumption  Population

Emissions = ~ Population

A more progressive Kaya ldentity:
Emissions = Emissions Energy_ . Won . We © - population
Energy  Consumption We Po#tlation

* Welfare economics: recognizing that the impact of a £1
increase in consumption depends on your starting point.
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cLosa|carson  Fossil CO, emission intensity

PROJECT

Global CO, emissions growth has generally resumed quickly from financial crises.
Emission intensity has steadily declined but not sufficiently to offset economic growth.

Global CO. Emissions and Intensity
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Economic activity is measured in purchasing power parity (PPP) terms in 2010 US dollars.
Source: CDIAC; Peters et al 2012; Le Quéré et al 2018; Global Carbon Budget 2018



http://cdiac.ornl.gov/trends/emis/meth_reg.html
http://dx.doi.org/10.1038/nclimate1783
https://doi.org/10.5194/essd-10-2141-2018
http://www.globalcarbonproject.org/carbonbudget/

cLosaL|carson Top emitters: Fossil CO, Emission Intensity

PROJECT

Emission intensity (emission per unit economic output) generally declines over time.
In many countries, these declines are insufficient to overcome economic growth.

Annual Emissions: Top Four Emitters per unit GDP
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@® Global Carbon Project ¢ Data: CDIAC/GCP/IEA/IMF

GDP is measured in purchasing power parity (PPP) terms in 2010 US dollars.
Source: CDIAC; IEA 2017 GDP to 2015, IMF 2018 growth rates to 2017; Le Quéré et al 2018; Global Carbon Budget 2018



http://cdiac.ornl.gov/trends/emis/meth_reg.html
https://webstore.iea.org/co2-emissions-from-fuel-combustion-highlights-2017
https://www.imf.org/en/publications/weo
https://doi.org/10.5194/essd-10-2141-2018
http://www.globalcarbonproject.org/carbonbudget/
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cLosa|carson  Fossil CO, emission intensity
PROJECT

~

The 10 largest economies have a wide range of emission intensity of economic activity

Fossil CO; Emissions Intensity and GDP
Top ten emitters- GDP measured using PPP in constant 2010 USD
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@® Global Carbon Project ¢ Data: CDIAC/UNFCCC/BP/USGS/UN e Data year: 2017

Emission intensity: Fossil CO, emissions divided by Gross Domestic Product (GDP)
Source: Global Carbon Budget 2018



http://www.globalcarbonproject.org/carbonbudget/

Fossil CO, Emissions per capita

GLOBAL CARBON
PROJECT

The 10 most populous countries span a wide range of development and emissions per capita

Fossil CO, Emissions Per Capita and Population
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Emission per capita: Fossil CO, emissions divided by population
Source: Global Carbon Budget 2018



http://www.globalcarbonproject.org/carbonbudget/
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cLosar|carson  Fossil CO, Emissions by source

PROJECT

Share of global fossil CO, emissions in 2017:
coal (40%), oil (35%), gas (20%), cement (4%), flaring (1%, not shown)

Annual Fossil CO. Emissions by Category
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Source: CDIAC; Le Quéré et al 2018; Global Carbon Budget 2018
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https://doi.org/10.5194/essd-10-2141-2018
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crosaL(carson  Fossil CO, Emissions in China

PROJE

China’s emissions are dominated by coal use, with strong and sustained growth in oil & gas
The recent declines in coal emissions may soon be undone if the return growth persists

- Annual Fossil CO, Emissions in China
Projected total issi th: +4.7% (+2.0% to +7.4%
002 rojected total emissions growth: + (+ 0+ ) . E Coal 7.5 A 4.5%

Gt CO:2in 2018

=2  Qil 1.5 A36%

- Cement 0.8 A1.0%
Gas 0.5 A17.7%

1960 1970 1980 1990 2000 2010 2018

projected

Source: CDIAC; Le Quéré et al 2018; Global Carbon Budget 2018
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crosaL{carson  Major flows from production to consumption

PROJECT

Flows from location of generation of emissions to location of
consumption of goods and services

. 4 > > -
" b 4 X ~ S

= Net transfers (MtCO )
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-1000 -500 0 500 1000 in MtCO;

Values for 2011. EU is treated as one region. Units: MtCO,
Source: Peters et al 2012



http://www.biogeosciences.net/9/3247/2012/bg-9-3247-2012.html
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crosaL|carson  Major flows from extraction to consumption

PROJECT

Flows from location of fossil fuel extraction to location of
consumption of goods and services
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http://dx.doi.org/10.1088/1748-9326/8/3/034011
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crosaL|carson Energy use by source

PROJECT

Renewable energy is growing exponentially, but this growth has so far been too low to offset
the growth in fossil energy consumption.

| Annual global energy consumption
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0 4
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This figure shows “primary energy” using the BP substitution method
(non-fossil sources are scaled up by an assumed fossil efficiency of 0.38)
Source: BP 2018; Figueres et al 2018; Global Carbon Budget 2018



http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
https://www.nature.com/articles/d41586-018-07585-6
http://www.globalcarbonproject.org/carbonbudget/

Global 1.5°C emissions pathways:
Limiting warming to 1.5°C with no or limited overshoot
Limiting warming to 1.5°C with high overshoot

Non-CO, emissions relative to 2010
Global total net CO2 emissions Emissions of non-CO2 forcers are also reduced
or limited in pathways limiting global warming
to 1.5°C with no or limited overshoot, but
they do not reach zero globally.
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50
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In pathways limiting global warming to 1.5°C 14
with no or limited overshoot as well as in
pathways with a high overshoot, CO2 emissions
30 -| are reduced to net zero globally around 2050.
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Characteristics of four illustrative model pathways

Breakdown of contributions to global net CO2 emissions in four illustrative model pathways

Fossil fuel and industry @ AFOLU
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CO, emission reductions are mainly achieved by ...

P1: ... social,
business and
technological
innovations result
in lower energy
demand up to
2050 ...

P2:...a broad
focus on
sustainability ...
with limited
societal
acceptability for
BECCS.

P3: ... changing
the way in which
energy and
products are
produced, and
[some]
reductions in
demand.
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Characteristics of four illustrative model pathways

Breakdown of contributions to global net CO2 emissions in four illustrative model pathways
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All 1.5° C pathways involve rapid reductions in emissions either
before (P1-3) or after (P4) 2030.

Note rapid means RAPID: emissions approximately halving over 10 years
How can this be done, and what will it cost?
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Counting the cost of reducing emissions: the
Marginal Abatement Cost Curve (MACC)

Global GHG abatement cost curve beyond business-as-usual — 2030
Gas plant CCS retrofit 4
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Total cost of reducing emissions = the area under
the MACC

Global GHG abatement cost curve beyond business-as-usual — 2030
Gas plant CCS retrofit -
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Problems with MACC-onomics

* MACCs frame mitigation as a succession of marginal
decisions, each making a small difference.

* Interactions (positive and negative) between mitigation
measures at any given time are not represented.

* Impact on mitigation costs of actions taken at an earlier
time are also not represented. These may include:

— Positive feedbacks (learning effects)
— Negative feedbacks (exhaustion of political capital)
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Conventional Benefit-Cost-Maximisation:
reduce emissions until MACC = SC-CO,

Marginal cost of GHG mitigation
(marginal abatement cost curve)

Marginal cost of GHG emissions
(climate damages function)
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than CBA optimal
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CBA optima| ..................

SCCforlower f-———cmcccmc e e - ==
than CBA optimal |
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CBA optimal
GHG emissions
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Your turn

* Open OxfordSimplelAM 2019 1.xlsx, Policy sheet
* “Consumption weighted participation in mitigation”
— When 0, no-one participates, and we follow baseline (RCP8.5)

— Set to 1, immediate global participation

— Look at MACC: starts above zero, assuming current MACC =
current SC-CO, (we are already rational agents)

— Try varying slope (rate of increase in MACC)
— Can you explain the response?

OXFORD



Annual average energy-related investments over the period 2016-

2050 Iin 4 scenario categories (Fig 2.27 underlying report)
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Context: annual average energy-related investments relative to
energy-related expenditure (assuming this follows GDP)

Additional energy-related investment for 1.5°Cis <1% of
global GDP, or <10% of projected spending on energy if
that remains at ~10% of global GDP
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